High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics
نویسندگان
چکیده
Seven equimolar, five-component, metal diborides were fabricated via high-energy ball milling and spark plasma sintering. Six of them, including (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2, (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2, (Hf0.2Zr0.2Mo0.2Nb0.2Ti0.2)B2, (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2, (Mo0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2, and (Hf0.2Zr0.2Ta0.2Cr0.2Ti0.2)B2, possess virtually one solid-solution boride phase of the hexagonal AlB2 structure. Revised Hume-Rothery size-difference factors are used to rationalize the formation of high-entropy solid solutions in these metal diborides. Greater than 92% of the theoretical densities have been generally achieved with largely uniform compositions from nanoscale to microscale. Aberration-corrected scanning transmission electron microscopy (AC STEM), with high-angle annular dark-field and annular bright-field (HAADF and ABF) imaging and nanoscale compositional mapping, has been conducted to confirm the formation of 2-D high-entropy metal layers, separated by rigid 2-D boron nets, without any detectable layered segregation along the c-axis. These materials represent a new type of ultra-high temperature ceramics (UHTCs) as well as a new class of high-entropy materials, which not only exemplify the first high-entropy non-oxide ceramics (borides) fabricated but also possess a unique non-cubic (hexagonal) and layered (quasi-2D) high-entropy crystal structure that markedly differs from all those reported in prior studies. Initial property assessments show that both the hardness and the oxidation resistance of these high-entropy metal diborides are generally higher/better than the average performances of five individual metal diborides made by identical fabrication processing.
منابع مشابه
review of the mechanical and thermal properties of high temperature Diboride ceramics
Ceramic borides, carbides and nitrides with high melting point, relatively good resistance to oxidation and corrosive environments are considered by many researchers in various high temperature industries, which is known from the family of materials as high temperature ceramic (UHTC). To be. All UHTCs have very strong bonds that give them structural stability at high temperatures, and among the...
متن کاملThermodynamic and Kinetic Studies for a Refractory Materials Program
Work during 1963 is reported and the work from mid-1960 reviewed on a comprehensive program of thermodynamic and kinetic studies necessary to the theoretical consideration to temperatures of 3000K of the reactions of the zirconium and hafnium carbides and borides with oxygenor halogen-containing atmospheres. ; • Work presented includes: preparation of borides and carbides; low ', temperature he...
متن کاملInvestigating the Energy Efficiency of TEX High Energy Derivatives with Different Carbon Fuller Nano Structures under Different Temperature Conditions by DFT Method
In this study, high energy energy derivatives of TEX with different carbon-containing fullerenes at different temperature conditions were studied using density functional theory. For this purpose, the materials were first geometric optimized, then the thermodynamic parameters were calculated for all of them. Then, the process of changing the energy-dependent parameters such as specific heat cap...
متن کاملA metal-organic framework with ultrahigh glass-forming ability
Glass-forming ability (GFA) is the ability of a liquid to avoid crystallization during cooling. Metal-organic frameworks (MOFs) are a new class of glass formers (1-3), with hitherto unknown dynamic and thermodynamic properties. We report the discovery of a new series of tetrahedral glass systems, zeolitic imidazolate framework-62 (ZIF-62) [Zn(Im2-x bIm x )], which have ultrahigh GFA, superior t...
متن کاملSintering and properties of Ultra High Temperature Ceramics for aerospace applications
The Ultra High Temperature Ceramics (UHTCs) represent a very interesting family of materials and therefore they are the subject of increasing attention from different engineering sectors and notably the aerospace industry. Indeed, hypersonic flights, re-entry vehicles, propulsion applications and so on, require new materials that can perform in oxidizing or corrosive atmospheres at temperatures...
متن کامل